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Optimal motion regimes for bodies of variable mass with limited jet 

power were considered in [l-g]. There, the active time for jet operation 

was chosen optimal. The purpose of the present investigation is to 

generalize the previously obtained results for the case when the operat- 

ing time of the powerplant is given and is less than optimal. 

Section 1 discusses the general approach of solving the variational 

problem with a given time of control action less than optimal. Section 2 

formulates the variational problem on the motion of a powerplant device 

with limited power, the working time of which (active time) is given 

and is less than optimal. Sections 3 and 4 illustrate the general re- 

sults with analyses of optimal motions in a plane-parallel gravitational 

field. Two limiting cases of powerplant control are considered: an 

ideally controlled system (variable optimal thrust - Section 3), and an 

uncontrolled system (constant thrust - Section 4). 

I_. Let us consider the Flayer problem applicable to the dynamical 

system 

ill e quantities xi, uk are phase coordinates and control functions, 

respectively, differentiation being with respect to time t; the bound- 

ary conditions are defined at a given initial time (t = 0) and a final 
instant of time (t = 7’); the value of the phase coordinate X,(T) is the 

control functional subject to optimization. One of the control functions 

is bounded from below u1 >O. 'Ihe control u1 will be assumed switched on 

if ul > 0, and switched off if u1 = 0; the sum of all intervals of time 
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during which the control u1 is switched on will be referred to as the 

control action time T,. 

Having solved the variational problem let us find the time T,*,<T 

which will be defined as the optimal action time for the control ul. 

Let, in addition to the above formulated variational problem, there 

be given a time of action for the control u1 less than the optimal 

T,< T,*. 

In order to reduce the complicated variational formulation to the 

standard Msyer formulation, we will introduce an auxiliary phase coordi- 

nate t, which is the current time of action of the control ul, and the 

control 6 related by the differential equation t, = 6. The control E(t) 
is a relay function assuming a value of unity at the moment of switch- 

ing on, and the value of zero when the control u1 is switched off. 

Utilizing the properties of the function E(t) we will replace the con- 

trol u1 by u16; this product coincides with u1 during switching on and 

is zero when switched off. 'Ihe system (1.1) becomes 

& = f* (Zj, u$, Uk)t i, = 6 (i, j=O, f,.. .,n; k=Z,, . . ,m) (1.2) 

If, simultaneously with the above mentioned boundary conditions for 

the phase coordinates xi(O) and xi(T), the boundary conditions for the 

auxiliary coordinate tnc are also satisfied 

tM(O) = 0, t, (T) = [&it = T, < T,* 
0 

while the relay control E(t) along with the remaining controls is chosen 

optimal in the sense of the control functional x,(7?, then the vari- 

ational problem with the additional condition of given time T, < T,* 
will be solved. In other words, the optimal number of switching on 

operations and the optimal time of action for the u1 control will be in- 

dicated in each active section of the trajectory. In solving the given 

problem by the L.S. Pontriagin method we construct, as usual, the 

Hamiltonian H and write the differential equations for the impulses 
[ momenta1 pi 

Let us represent H as the function of the control 6 as follows: 
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Let, for definiteness, there be a requirement to find the maximum of 

the control functional x,(T), i.e. the H function must be reaching the 

absolute minimum on the optimal controls ul, uk and 6. For the control 

6 the absolute minimum of I! takes place when 

6 -; 0 for HI--Ho+pa>O, 6 = 1 for HI--o-i-pa<0 (1.5) 

The difference H,(t) - H,(t) is nonpositive. Indeed, IX, = Ii0 for 

u1 = 0, as follows from the definition (1.4) of the functions H,,, H,; 

for other values of zzl the difference H, -H8 should be negative since, 

otherwise, the ~~amiltonian fjr can be decreased by letting u1 = 0, i.e. 

N, - Ha = 0. Ibis determines the sign for the impulse pS 

P, > 0 (1.6) 

(p, < 0 for the case of maximum H). If p, < 0, then the expression H, - 

H, + p, would never change sign, and s(t) z 1; at the same time t, E 1 

and t,(T) = T, which would automatically violate the boundary condition 

t,(T),= TN. We note that for u1 = 0 the optimal value for S = 0, since 

P*,' 0. If P, = 0 then the resulting time Ts = T,*. 

The described approach is also applicable for several controls with 

given times of action less than optimal. In that case, a required number 

of auxiliary controls 6 is added instead of one, 

3. 1. Let us introduce the following notation: Gm, Gn, CT, ';N and G 

represent the current weight of the working medium, the payload, the 

sum of these two weight components, the weight of the powerplant, and 

the current weight of the body of variable mass, respectively; q, V, P 

and N are the weight consumption of the working medium, flow velocity, 

thrust, and the power of the jet, respectively; N, and a are the maximum 

power delivered by the powerplant and the unit weight of the powerplant; 

and a is the acceleration resulting from the jet. 

The above quantities are related as follows: 

GN = uNo, a-Pg- r/2@% 
G 'z+~N 

In the following we will use the weight characteristics referred to 

the initial weight of the body of variable mass with previous notations 

Gm, G,, CT, GN, G and q, where the initial weight is unity. The power 

will be referred to the maximal power, retaining the notation N. Ihen 

the expression for acceleration will be 
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(2-l) 

Let us now consider the rectangular coordinates x, 3; and the corre- 

sponding velocities along the axes f = vX, jl = v , and denote by 
X(x, y, t), Y(x, y, t) the projections of the grivitational acceleration 

on the axes of the rectangular system of coordinates. The thrust direc- 

tion will be characterized by the angle F between the thrust vector and 

the x-axis. 'Ihe upper indexes 0 and 1 will refer to the beginning (t=O) 

and end (t = 7) of the motion, respectively. 

The equations of plane motion of a body of variable mass in an arbi- 

trary gravitational field and the boundary conditions are of the form 

i& = - 4, Z = v5, ti = vu, d, = a cos f! + X, 6,= a sin p + Y 

Gr (0) = 1 - GN', 5 (0) = x0, y (0) = $, v1: (0) = 77x0, vy (0) = up0 

2 (T) = zl, y (T) = yl, v&q = ?&I, Dy (T) = vz: (2.2) 

where the function a = a(N, GN, $, 1) is given by the formula (2.1). 

In the considered problem the functions P(t), q(t), N(t) and G,,,(t) 

are the controlling functions. In regard to G, it is known [71 that the 

optimal progr~ing of it along the trajectory is insignificant for the 

result. Therefore, in the following we will let GM = const and will de- 

termine its value from the optimal conditions. 'lhe control N(t) is 

bounded from below and above O\<N(t)\(l. 'Ihe weight consumption T(t) 
can be programned either along the trajectory, if there is no restric- 

tion on the thrust, or assumed constant if the thrust P and the power N 

are constant.* Also, the cons~ption control may consist of sections 

where c~ = 0. The control F(t) is not restricted in any way. 

Let the dynamic system be subject to the equations and boundary con- 

ditions (2.2), and let there be given a time T and the active time T,. 
Also, let the controls P(t), q(t), N(t) be chosen from a permissible 
class. It is required to find optimal controls and optimal trajectories 

yielding a maximum of the functional $' = G, which is the relative pay- 

load. 

Let us introduce the auxiliary phase coordinate t, and the control 

function S and form the control /Is instead of the previous q. 'Ihe com- 

plete system of equations and boundary conditions for t, are in this 

l It will be shown below that the maximal utilization of power, i.e. 

N = 1, is optimal. 
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case of the form 

& = - q6, IE = vx, y: = qJUt ej,=a8cos~ +X 
(2.3) 

tiy=a6sinp+Y, t,==6 (t*(o) = 0, t*(T) = T,J 

The Hamiltonian H is in explicit form and the differential equations 

for the impulses p are expressed as follows: 

& = (p,, cos p + p,, sin p) 1/(2g’ ‘) GNq N 6, 
(G, + GJ 

$x = -P,$& PVl,g 

(2.5) 

riy =--P,,g-Pp,,g li,,= -P,, Y&y--Py, &= 0 

The final value of the impulse pz' = -1. In the variational problem, 

one looks for the maximum of the final quantity $I. nrerefore, the 

sought optimal controls must yield a minis of the J~~iltonian N. 

'lhe optimal controls /3(t) and N(t) were given in L?,S,A-111; in the 

present notation they are of the form 

Pnx= - PvCO~B7 P,,== -P& B (rv=m, (2.6) 
N (t) zz 1 (2.7) 

Utilizing (2.6) and (2.7), we rewrite the equation for px as well as 
the function H, retaining in the latter the terms with the control func- 
tions 

(2.8) 

2. Let us consider the case of variable optimal consumption (thrust). 

If no restrictions of some kind are placed upon the consumption control 

then, as is known [2,4,71, the solution of the formulated variational 

problem is reduced to determination of the optimal law for variation of 

the thrust acceleration vector which results in the minimum of the 

functional 
T 

J = . a%% 
!. 

(2.91 
0 



The motion of a body with variable mass 1305 

while the optimal quantity G, and the maximal quantity Gn are found from 

the relationships 

GN = I/aJ I 2g - aJ / 2g, G, = (1 - t/aJ / 2g)” (2.10) 

according to the known functional J. 

Thus, the original problem of finding the maxim %' can be replaced 

in the case of the variable optimal consumption by the problem of find- 

ing the minimum J, and the control function q(t) by the control function 

e(t). 

The problem of the given time of action T, < T,* in terms of the 

functional J and the control function a(t) is described by the following 
system of differential equations: 

j = a%?, 

6, = a6 cos p + X, 

2 = vr, Jj = vy 

dU = a&s&p+ Y, i, = 6 
(2.11) 

The H~iltonian II and the differential equations for the impulses 

are of the form 
(2.12) 

H = - a26 + PA + pyvy + pur (ah ~0s P + X> + pov (a6 sill P + Y) + p,,6 

(2.13) 

Pvx = - Pm 24, = - PII, i?, = 0 

'Ihe controls a(t) and P(t), which on the active sections yield a 

maximum of the function H, satisfy the relationships 

_- --- 
a = p,l2; Pvx=pv~os81 PLYi/ = Pv sin P (&J = v pv: + P$) (a.13 

The times of switching on the acceleration are related to the change 

in the sign of the combination A 

6== 1 for A>O, 6=0 ford<0 (A =~,=f/t+ P_J (2.$5) 

The quantity pa < 0 determines the value of the control time of 
action T,+ If T, is not given beforehand, then pu= 0 and A < 0 and, 
consequently, there are no passive sections on the trajectory M. 'Ihis 

conclusion is valid only in connection with the case of variable optimal 

cons~ption. 

3. Let us consider the case of constant thrust. The optimal nature 

of the limiting control N(t) G 1 along the active sections of the 
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trajectory was shown above. This property, 

constant thrust, leads to the constancy of 

us express for the case of constant thrust 

along with the requirement of 

consumption q(t) = const. Let 

the equations of motion and 

the functional by means of a new control parameter, the initial accele- 

ration n a due to the thrust. Since 7 = const, the consumption equation 

(2.3) is integrated and the relative payload is expressed as follows: 

System (2,3), without the first equation and with the aid of the 

parameter uO, can be expressed as 
(217) 

The impulse equations remain as before (see (2.5)) with the exception 

of the equation for px (2.8) 

PC =-PO (1 

rros 
- 4Q 

The function H* becomes 

(2.18) 

(2.19) 

The optimal control p is found with the aid of the impulses pyX, p,, 

(2.6). The instants of switching on (S = 1) and switching off (S = 0) 

coincide with the instants of sign change in the expression A 

(2.20) 

6 = 1 for A< 0, 8=0 for A>0 A--PPnWv*.I-PJM. 
*VI 

'Ihe procedure of choosing the optimal value for iG% or, equivalently, 

the establishment of an optimal relation between a@ and q, in COntFast 

to the example worked out in Section 2, requires the simultaneous solu- 

tion of the weight and trajectory parts of the general problem. ?ha 

particular examples of such a procedure are given in Section 4. 

In contrast to the case of variable optimal thrust, in this CWAZ it 

is not possible to prove the optimal trajectories without passive 
sections. It will be shown below (Section 4) that the inclusion of a 

passive section improves the result.* 

* For motion in a force-free field, this conclusion was made by Preston- 

Tfiomes (see, for example 113j. Paper f$jl gives a choice of an optima1 

passive section in the ~om~~t~tion of Interplanetary trajectories. 
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The number of passive sections on the trajectory is determined by 

the multivalence of the inverse function p,(t). Indeed, the first term 

p~q is unchanged in the expression for A on the passive section, but 

only the function p,(t) is changing and the number of roots of the equa- 

tion A = 0 depends on the form of this function. 

3. Let us consider a motion in a plane-parallel gravitational field 

with variable optimal thrust. In the previously established notation, 

the motion is described by a system of differential equations (2.11) 

for X(x, y, t) = 0, Y(x, y, t) = - g = const. ‘Ihe differential equations 

for the impulses (2.13) can be integrated 

Px = Cl9 py = c29 pm = - c,t + c3, pvg = - c,t + c4 (3.1) 

From the expression for p,, and p,, and, consequently, for p, = 

I(- c1t + CJ 2 + (-c2t + c4) 211’2 it may be concluded that the tra- 

jectory in a plane-parallel field with a switch off control contains 

one passive section. Indeed, equation A = 0 (see (2.15)) is quadratic 

and has two roots 

1 
t,, ,L = 2 Cl + Q 

hc3+ c2c4 + I',/- 4pa(c12 + c22) - (clc4 + c2c3)2i (3e2) 

which determine the beginning of t, and the end tk of the single passive 

section. Since the duration of the latter is given as tk - t, = T- T,, 
then the impulse px can be eliminated from formulas (3.2) and the in- 
stants of beginning and end of the passive section are finally given by 

Optimal laws for projections of the motor acceleration ax = a cos F, 

aY 
= a sin p on the active sections are linear in time (see (2.14) and 

(3.1)) 

2 
ox = + (-- c,t + c3), uy = $ (- c2t + c4) (3.4) 

In order to find the constants cl, c2, ca and cq 

for given initial and boundary values of the coordi- 

nates and velocities, the equation of 

motion in system (2.11) should be inte- 

grated along the active and passive 

sections, the location of which is deter- 

I 
mined by formulas (3.3). The change in 

the projections of the motor acceleration 

Fig. 1. 
is given by the functional dependence 

(3.4) on the active part of the trajec- 

tory, and at the instant of switching off 
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the control, the motion becomes unaccelerated with a = a = 0. 
r Y 

As an example illustrating the method for solving the problem of the 

powerplant with switch-off capability, let us consider the one-dimen- 

sional motion in a force-free field (g =: 0) between two positions of 

rest separated by a distance 1. The boundary values of the phase coordi- 

nates are as follows: 

z (0) = vx (0) = vx fT) = 0% CT (T) = 1 (3.5) 

The beginning and end of the trajectories are the points of equi- 

librium; therefore, the passive section cannot start or end the motion. 

After carrying out a consecutive integration of the equations of motion 

(2.11) along the active and passive sections we obtain the constants c 1 

and c3 
1 Tl 

%=24773-((T_~T,)3 ’ ‘3 = I2 T3 - (T - TM)3 (3.6) 

Substituting these quantities into (3.3) 

we find the time of start and end of the 

passive section 

t, ==lh T,, tx =T- ‘& T, 

as well as the projections of the motor 

accelerations 

1 2 3 4 5 a, = 6 T~~-$~T?)3 
.W 

for {F > ;k’,-“G%,” 
,/ 

Fig. 2. 
a, = 0 for T - I/Z T, > t > ‘IaT, (3.7) 

The function a,(t) determines the value of the integral functional 

(2.9) 

V2T.W T 

I= s ax= CB + s a,=& = 12 12 

Ta - (T - T&))” (3.8) 

0 l-+&T& 

Thus, the passive section on a trajectory connecting two points of 

rest in a force-free field is located in the middle of the trajectory. 

For a given time of motion T and given distance 1 between the points, 

the J integral increases monotonically for decreasing time T& of con- 

trol action (see Fig. 1, I = J/(12Z2/T3)). For a given time ci, and given 

1, the J integral decreases monotonically for increasing time T (See 

Fig. 2. 1, = J,‘(12Z2/T,3)). 

As a second example, let us consider the problem of acquiring the 

given absolute value of velocity for a body of variable mass in a 
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force-free field. Let the body of variable mass begin its motion from 
an initial position with the fixed phase coordinates 

z (0) = x0, y (0) = yo, vx (0) = VrO, vy (0) = 77~~ 

It is required to determine the optimal law for variation of the 
functions a,(t), a,(t) and 6(t) for given time of motion T, time of con- 
trol action T, and the magnitude of the final velocity V’ = \I [(U I)2 f 

(v Y) * 
’ ‘3 The coordinates of end motion and the direction of the Final 

velocity vector are not fixed but are chosen from the optimal conditions 
Therefore, p,(T) = ~~(7’) = 0, and in the formulas (3.1) c1 = e3 = 0. 

Consequently, the function A (see (2.15) and (3.2)), which determines 

the times of switching on and off the control, is constant. However, the 

sign and magnitude of this function are not determined. This means that 
the distribution of passive sections of the trajectory is not determined 
and does not affect the functional of the problem. The projections of 
the motor acceleration are constant k?1 

a, = ‘1% c3, aar = ‘la c 4 (3.9) 

The values of the parameters c2 and c4 and the expression for the 
functional are as follows: 

cp = 2v$w f T,, J z w= IT, (ut = 9 I vo-1) (3.10) 

4. Let us consider the motion in a plane-parallel field with constant 

thrust. In this case, the equations of motion (2.17) and the impulse 

equations are simplified. 'Ike impulses p and P, are expressed analo- 

gously to the case of variable optimal tikst (3.1). These expressions 

yield the formulas for the direction cosines of the thrust vector on 
the active sections of the trajectory 

sin Q = 
cat - c4 

cOsP=~f 

e1t - es 

VT+ 41 + c3)2 + (- c2t + 42 
, 

- et + c3)2 + (- c2t + c*)” 
(4.jf 

The instants for switching on and off the thrust can be found from 

the conditions (2.20). Since the function t(p,) is in general a double 

valued function of its argument for a plane-parallel field, the tra- 

jectory can have no more than one passive section. 

Indeed, if the combination A (2.20) at time t, changes sign from a 

minus to a plus, then starting with that time the motion becomes un- 

accelerated and only the function p,(t) can vary with time in the ex- 

pression for A(t). For a double valued t(p,) there will exist a time tk 

such that p,(tk) = p,(tll) and then the combination A will change sign 
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for the second time. The beginning t, and the end tk for the passive 

section are found according to formulas similar to (3.2). It is worth 

noting that the conclusion about the number of passive sections in a 

plane-parallel field coincides with the above obtained result in 
Section 3 for the variable optimal thrust as well as for constant thrust 
but for an entirely different class of motive systems [lO,llI . 

Let us consider both problems given in Section 3 under the condition 
of constant thrust . 
two points of rest 
dimensional mot ion 
in formulas (4.1). 
has a direction wb i 

opposite to it. 

The first problem is one-dimensional motion between 

separated by a distance 1 from each other. The one- 

takes place for the values of the constants cz=c4=o 

Also sin p = 0, cos F = f 1. i.e. the thrust vector 

ch coincides with the direction of motion or is 

In order to establish the number and instant of thrust direction 

changes, we will again formulate a variational problem for a one-dimen- 

sional motion by introducing the control P*(t) = f 1 for the direction 

of the thrust vector. The equations of motion, the equations for the 

impulses, and the Hamiltonian are in this case, expressible as (see 

(2.17), (2.23) and (2.19)) 

I?, = - q6, . x= 

For a minimum of the function H, it is required that P*(t) = 

- sign p,,. Inasmuch as the impulse pvx is a linear function of time 

ff auf a03 !+ 

Fig. 3. Fig. 4. 

P = - c1t + c3 = c(t - t*j. then the thrust vector changes direction 

ii’s single-valued manner at the instant t = t*. The combination A 

which determines the boundaries of the passive section is, for the case 
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considered, of the form 

a0 
A = - prq - I c (t - t*) I 1 _ qtx + P.,, (4.3) 

It follows from the analysis of the roots of the equation A = 0 which 
determines the beginning and end of the passive section that t * - t,, = 
tk - t*, i.e. the time t* divides the passive section into two equal 
parts. Thus, the optimal trajectory of translation from one point of 
rest to another with constant thrust, as in the previous case, consists 
of three sections: the acceleration section (0 f t < tit, 6 = 1. F* = l), 
the passive section (t,lq t < tk, 6 = 0), and the deceleration section 
(tkft,<T, 6 = 1, p* =-I), 

The integration of the equations of motion sequentially along the 
three sections yeidls two relations between the beginning t, and the 
duration T, of the active sections in terms of the consumption q and 
the initial motor acceleration a0 

1 - qT, = (1 - qth )2, I = 7 
C 

2t,, - T, - i (2’ - T,) In (1 - &“,I (4.4) 1 

In deriving the second formula in (4.4). the quantity tk was elimi- 
nated with the aid of the relationship tk = tZt + T - TVW. Expressing tH- 
in the first formula of (4.4) by q, T.,:,, and substituting into the second 
one, we utilize the obtained relationship for elimination of a,, from the 
expression for the functional G,, (2.16) 

G, = 1 - em - q (T /X,)3 G,,3 [2 (1 - v/1 - G,,,) - G,,, + 

+ 1/z G, (T/T, - 1) In (1 - C,n)]-z (4.5) 

where Gm = qTu is the supply of the working medium 

CD, =LT (a/2& P/T3 

The procedure for finding the maximum G, has been carried out for 
several given values of T&/T, as well as for the optimal (T,/T)*. The 

optimal duration of the active sections (T,/T)* and the optimal rela- 
tionship between the relative weights of the powerplant G,v and the 
supply of the working medium G,,, are shown in Fig. 3 as function of the 
quantity ol. 

Figure 4 shows comparative curves Gn(ol) for the following cases: 
(1) motion with constant thrust T&/l’ = 0.1; (2) motion with Constant 

thrust T-/T = 0.2; (3) motion with constant thrust and optimal active 
time (the curve corresponds to the results of [lI>; (4) motion with 
variable optimal thrust whose active time is equal for each value of @, 
to the optimal active time for the ease of constant thrust: (5) motion 
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with variable optimal thrust without passive sections (Curve 5 corre- 
sponds to the results of f4,53>. 

Curves 4 and 5 in Fig. 4 were computed from the expressions (see 
(2.10) and (3.8)) 

The second problem is the attaining of a given modulus 
of velocity for the motion in a force-free field Id. The 

analysis of this problem is in many re- 
spects like that in Section 3. The values 
of the constants cl and c2 were chosen 
for optimal reasons. The zero values were 
chosen likewise. 

The combination A (2.20) which deter- 
mines the times of switching off and on 

Fig. 5. is a function independent of time along 
the passive section (since p, = const). 

Therefore, the passive section can only close the trajectory and. con- 

sequently, only the active time r, affects the functional of the problem. 

The results are shown in Pig. 5 where the relationship Gn((hW) is 

given. The quantity QDu is expressed as 

The same figure shows, for comparison, the curve for the case of 
optimally variable consumption Gn = (1 - \lOV)* (see (2.10 and (3. IO)). 
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